skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Cullen, Joshua A"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Species distribution models (SDMs) have become increasingly popular for making ecological inferences, as well as predictions to inform conservation and management. In predictive modeling, practitioners often use correlative SDMs that only evaluate a single spatial scale and do not account for differences in life stages. These modeling decisions may limit the performance of SDMs beyond the study region or sampling period. Given the increasing desire to develop transferable SDMs, a robust framework is necessary that can account for known challenges of model transferability. Here, we propose a comparative framework to develop transferable SDMs, which was tested using satellite telemetry data from green turtles (Chelonia mydas). This framework is characterized by a set of steps comparing among different models based on (1) model algorithm (e.g., generalized linear model vs. Gaussian process regression) and formulation (e.g., correlative model vs. hybrid model), (2) spatial scale, and (3) accounting for life stage. SDMs were fitted as resource selection functions and trained on data from the Gulf of Mexico with bathymetric depth, net primary productivity, and sea surface temperature as covariates. Independent validation datasets from Brazil and Qatar were used to assess model transferability. A correlative SDM using a hierarchical Gaussian process regression (HGPR) algorithm exhibited greater transferability than a hybrid SDM using HGPR, as well as correlative and hybrid forms of hierarchical generalized linear models. Additionally, models that evaluated habitat selection at the finest spatial scale and that did not account for life stage proved to be the most transferable in this study. The comparative framework presented here may be applied to a variety of species, ecological datasets (e.g., presence‐only, presence‐absence, mark‐recapture), and modeling frameworks (e.g., resource selection functions, step selection functions, occupancy models) to generate transferable predictions of species–habitat associations. We expect that SDM predictions resulting from this comparative framework will be more informative management tools and may be used to more accurately assess climate change impacts on a wide array of taxa. 
    more » « less
    Free, publicly-accessible full text available December 1, 2025
  2. Abstract BackgroundUnderstanding how to connect habitat remnants to facilitate the movement of species is a critical task in an increasingly fragmented world impacted by human activities. The identification of dispersal routes and corridors through connectivity analysis requires measures of landscape resistance but there has been no consensus on how to calculate resistance from habitat characteristics, potentially leading to very different connectivity outcomes. MethodsWe propose a new model, called the Time-Explicit Habitat Selection (TEHS) model, that can be directly used for connectivity analysis. The TEHS model decomposes the movement process in a principled approach into a time and a selection component, providing complementary information regarding space use by separately assessing the drivers of time to traverse the landscape and the drivers of habitat selection. These models are illustrated using GPS-tracking data from giant anteaters (Myrmecophaga tridactyla) in the Pantanal wetlands of Brazil. ResultsThe time model revealed that the fastest movements tended to occur between 8 p.m. and 5 a.m., suggesting a crepuscular/nocturnal behavior. Giant anteaters moved faster over wetlands while moving much slower over forests and savannas, in comparison to grasslands. We also found that wetlands were consistently avoided whereas forest and savannas tended to be selected. Importantly, this model revealed that selection for forest increased with temperature, suggesting that forests may act as important thermal shelters when temperatures are high. Finally, using the spatial absorbing Markov chain framework, we show that the TEHS model results can be used to simulate movement and connectivity within a fragmented landscape, revealing that giant anteaters will often not use the shortest-distance path to the destination patch due to avoidance of certain habitats. ConclusionsThe proposed approach can be used to characterize how landscape features are perceived by individuals through the decomposition of movement patterns into a time and a habitat selection component. Additionally, this framework can help bridge the gap between movement-based models and connectivity analysis, enabling the generation of time-explicit connectivity results. 
    more » « less
  3. Advances in biologging have increased the understanding of how animals interact with their environment, especially for cryptic species. For example, giant armadillos (Priodontes maximus) are the largest extant species of armadillo but are rarely encountered due to their fossorial and nocturnal behavior. Through the analysis of speed, turning angles, and accelerometer activity counts, we estimated behavioral states, characterized activity budgets, and investigated the state-habitat associations exhibited by individuals monitored with GPS telemetry in the Brazilian Pantanal from 2019 to 2020. This methodology is proposed as a useful framework for the identification of priority habitat. Using the non-parametric Bayesian mixture model for movement (M3), we estimated four latent behavioral states that were named ‘vigilance-excavation’, ‘local search’, ‘exploratory’, and ‘transit’. These states appeared to correspond with behavior near burrows or termite mounds, foraging, ranging, and rapid movements, respectively. The first and last hours of activity presented relatively high proportions of the vigilance-excavation state, while most of the activity period was dominated by local search and exploratory states. The vigilance-excavation state occurred more frequently in regions between forest and closed savannas, whereas local search was more likely in high proportions of closed savanna. Exploratory behavior probability increased in areas with high proportions of both forest and closed savanna. Our results establish a baseline for behavioral complexity, activity budgets, and habitat associations in a relatively pristine environment that can be used for future work to investigate anthropogenic impacts on giant armadillo behavior and fitness. The integration of accelerometer and GPS-derived movement data through our mixture model has the potential to become a powerful methodological approach for the conservation of other cryptic species. 
    more » « less
  4. Abstract Understanding animal movement often relies upon telemetry and biologging devices. These data are frequently used to estimate latent behavioural states to help understand why animals move across the landscape. While there are a variety of methods that make behavioural inferences from biotelemetry data, some features of these methods (e.g. analysis of a single data stream, use of parametric distributions) may limit their generality to reliably discriminate among behavioural states.To address some of the limitations of existing behavioural state estimation models, we introduce a nonparametric Bayesian framework called the mixed‐membership method for movement (M4), which is available within the open‐sourcebayesmoveR package. This framework can analyse multiple data streams (e.g. step length, turning angle, acceleration) without relying on parametric distributions, which may capture complex behaviours more successfully than current methods. We tested our Bayesian framework using simulated trajectories and compared model performance against two segmentation methods (behavioural change point analysis (BCPA) and segclust2d), one machine learning method [expectation‐maximization binary clustering (EMbC)] and one type of state‐space model [hidden Markov model (HMM)]. We also illustrated this Bayesian framework using movements of juvenile snail kitesRostrhamus sociabilisin Florida, USA.The Bayesian framework estimated breakpoints more accurately than the other segmentation methods for tracks of different lengths. Likewise, the Bayesian framework provided more accurate estimates of behaviour than the other state estimation methods when simulations were generated from less frequently considered distributions (e.g. truncated normal, beta, uniform). Three behavioural states were estimated from snail kite movements, which were labelled as ‘encamped’, ‘area‐restricted search’ and ‘transit’. Changes in these behaviours over time were associated with known dispersal events from the nest site, as well as movements to and from possible breeding locations.Our nonparametric Bayesian framework estimated behavioural states with comparable or superior accuracy compared to the other methods when step lengths and turning angles of simulations were generated from less frequently considered distributions. Since the most appropriate parametric distributions may not be obvious a priori, methods (such as M4) that are agnostic to the underlying distributions can provide powerful alternatives to address questions in movement ecology. 
    more » « less